Palladium-Catalyzed Cyclization Reaction of Allylic Bromides with 1,2-Dienyl Ketones. An Efficient Synthesis of 3-Allylic Polysubstituted Furans

Shengming Ma* and Lintao Li

Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China

Supporting Information

Experimental Section

Allyl chloride and allyl bromide are commercially available and used as it is. 3-Bromo-2-phenyl-1-propene (**3c**), ^{1,2} cinnamyl bromide (**3d**), ³ 3-butyl-3,4-pentadien-2-one (**1a**), ⁴ 3-methyl-3,4-pentadien-2-one (**1b**), ⁴ 3-allyl-3,4-pentadien-2-one (**1c**), ⁴ 3,4-dodecadien-2-one (**1d**), ⁴ were prepared according to the published procedures. ¹H NMR spectra were measured using CDCl₃ as the solvent and Me₄Si as the internal standard. MS spectra (EI) were measured at a ionization voltage of 70 eV.

Reaction of 3-Butyl-3,4-pentadien-2-one with Allyl Chloride or Bromide (Table 1). To a solution of 1.0 mmol of 3-butyl-3,4-pentadien-2-one (1a) and allyl halide (3) (for the equivalents see Table 1) in acetonitrile (2 mL) were added 1 equiv of K₂CO₃ and 5 mol % of the catalyst. The reaction mixture was stirred at 25 °C for the time specified in Table 1. Upon the completion of the reaction as monitored by TLC (eluent: hexanes), the mixture was quenched with water and extracted with ether. Dring over MgSO₄, rotary evaporation, and chromatography on silica gel (eluent: hexane) afforded 4-allyl-3-butyl-2-methylfuran 4a and 3-butyl-2-methylfuran 5a.

Reaction of 1-Substituted 1,2-Allenyl Ketones with Allyl Bromides (Table 2).

To a solution of 1.0 mmol of allyl bromide (3) and 1.5 equiv of 1,2-allenketone (1) in acetonitrile (2 mL) were added 1 equiv of K₂CO₃ and 5 mol % of PdCl₂(PhCN)₂. The reaction mixture was stirred at 25 °C for the time specified in **Table 2**. Upon the completion of the reaction as monitored by TLC (eluent: hexanes), the mixture was quenched with water and extracted with ether. Drying over MgSO₄, rotary evaporation, and chromatography on silica gel (eluent: hexane) afforded polysubstituted furans **4**.

3-Butyl-2-methylfuran (**5a**):⁵ liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.20 (s, 1 H), 6.19 (s, 1 H), 2.30 (t, J = 7.4 Hz, 2 H), 2.19 (s, 3 H), 1.15 - 1.54 (m, 4 H), 0.90 (t, J = 7.3 Hz, 3 H); MS (m/e) 138 (M⁺, 24), 95 (100); IR (neat) 1624, 1559 cm⁻¹.

4-Allyl-3-butyl-2-methylfuran (**4a**): liquid; 1 H NMR (300 MHz, CDCl₃) δ 7.00 (s, 1 H), 5.32-5.99 (m, 1 H), 4.98 - 5.16 (m, 2 H), 3.08 (d, J = 6.4Hz, 2 H), 2.27 (t, J = 7.8 Hz, 2 H), 2.18 (s, 3 H), 1.18 - 1.52 (m, 4 H), 0.90 (t, J = 7.1 Hz, 3 H); MS (m/e) 178 (M⁺, 46), 43 (100); IR (neat) 1637, 1559 cm⁻¹; HRMS calcd for C₁₂H₁₈O 178.1358. Found 178.1368.

3-Butyl-2-methyl-4-(2-phenyl-2-propenyl) furan (4b): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.52 (m, 5 H), 7.01 (s, 1 H), 5.46 (s, 1 H), 5.09 (s, 1 H), 3.55 (s, 2 H), 2.33 (t, J = 7.4 Hz, 2 H), 2.23 (s, 3 H), 1.26-1.58 (m, 4 H), 0.94 (t, J = 6.9 Hz, 3 H); MS (m/e) 254 (M⁺, 62), 43 (100); IR (neat) 1626, 1559 cm⁻¹; HRMS calcd for $C_{18}H_{22}O$ 254.1671. Found 254.1679.

(*E*)-3-Butyl-2-methyl-4-(3-phenyl-2-propenyl) furan (4c): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.08-7.31 (m, 5 H), 6.99 (s, 1 H), 6.38 (d, J = 15.8, 1 H), 6.21 (dt, J = 15.8, 6.5 Hz, 1 H), 3.18 (d, J = 6.5 Hz, 2 H), 2.23 (t, J = 7.5 Hz, 2 H), 2.15 (s, 3 H), 1.13-1.33 (m, 4 H), 0.82 (t, J = 7.2 Hz, 3 H); MS (m/e) 254 (M⁺, 72), 43 (100); IR (neat) 1628, 1597, 1558 cm⁻¹; HRMS calcd for C₁₈H₂₂O 254.1671. Found

- **4-Allyl-2,3-dimethylfuran** (**4d**): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.03 (s, 1 H), 5.78-5.96 (m, 1 H), 4.92-5.18 (m, 2 H), 3.08 (d, J = 6.1, 2 H), 2.18 (s, 3 H), 1.85 (s, 3 H); MS (m/e) 136 (M⁺, 55), 81 (100); IR (neat) 1637, 1563 cm⁻¹; HRMS calcd for C₉H₁₂O 136.0888. Found 136.0899.
- (*E*)-2,3-Dimethyl-4-(3-phenyl-2-propenyl) furan (4e): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.16-7.45 (m, 5 H), 7.09 (s, 1 H), 6.44 (d, J = 15.9 Hz, 1 H), 6.30 (dt, J = 15.9, 6.1 Hz, 1 H), 3,25 (d, J = 6.1 Hz, 2 H), 2.21 (s, 2 H), 1.89 (s, 3 H); MS (m/e) 212 (M⁺, 66), 43 (100); IR (neat) 1635, 1559 cm⁻¹; HRMS calcd for C₁₅H₁₆O 212.1201. Found 212.1221.
- **2,3-Dimethyl-4-(2-phenyl-2-propenyl) furan (4f):** liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.52 (m, 5 H), 7.00 (s, 1 H), 5.42 (s, 1 H), 5.02 (s, 1 H), 3.50 (s, 2 H), 2.18 (s, 3 H),1.86 (s, 3 H); MS (m/e) 212 (M⁺, 100); IR (neat) 1682, 1626, 1598, 1570 cm⁻¹; HRMS calcd for C₁₅H₁₆O 212.1201. Found 212.1191.
- **3,4-Diallyl-2-methylfuran** (**4g**): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.03 (s, 1 H), 5.74-5.98 (m, 2 H), 4.90-5.13 (m, 4 H), 2.96-3.16 (m, 4 H), 2.18 (s, 3 H); MS (m/e) 162 (M⁺, 49), 43 (100); IR (neat) 1637, 1559, 1431 cm⁻¹; HRMS calcd for C₁₁H₁₄O 162.1044. Found 162.1059.
- (*E*)-3-Allyl-2-methyl-4-(3-phenyl-2-propenyl) furan (4h): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.16-7.42 (m, 5 H), 7.10 (s, 1 H), 6.44 (d, J = 15.86 Hz, 1 H), 6.30 (dt, J = 15.79, 6.25 Hz, 1 H), 5.78-5.94 (m, 1 H), 4.95-5.08 (m, 2 H), 3.25 (d, *J* = 6.44 Hz, 2 H), 3.10 (d, *J* = 5.86 Hz, 2H), 2.21 (s, 3 H); MS (m/e) 238 (M⁺, 29), 117 (100); IR (neat) 1635, 1559, 1449 cm⁻¹; HRMS calcd for C₁₇H₁₈O 238.1358. Found 238.1356.
 - **3-Allyl-2-methyl-4-(2-phenyl-2-propenyl) furan (4i):** liquid; ¹H NMR (300

MHz, CDCl₃) δ 7.24-7.52 (m, 5 H), 7.00 (s, 1 H), 5.75-5.95 (m, 1 H), 5.45 (s, 1 H), 4.94-5.13 (m, 3 H), 3.53 (s, 2 H), 3.09 (d, J = 5.8 Hz, 2H), 2.21 (s, 3 H); MS (m/e) 238 (M⁺, 48), 43 (100); IR (neat) 1635, 1559, 1492 cm⁻¹; HRMS calcd for C₁₇H₁₈O 238.1358. Found 238.1363.

Reaction of 3,4-Dodecadien-2-one (1d) with Allyl Bromide. To a solution of 0.5 mmol of 3,4-dodecadien-2-one (1d) and allyl bromide (3b) in solvent (1 mL) as specified in Scheme 3, 1 equiv of K₂CO₃ and 5 mol % of PdCl₂(PhCN)₂ were added. The reaction mixture was stirred at 25 °C. Upon the completion of the reaction as monitored by TLC (eluent: hexanes), the mixture was quenched with water and extracted with ether. Dring over MgSO₄, rotary evaporation, and chromatography on silica gel (eluent: hexane) afforded a mixture of 3-allyl-2-heptyl-5-methylfuran 8 and 2-heptyl-5-methylfuran 9. The ratio of 8 and 9 was determined by ¹H NMR analysis.

3-Allyl-2-heptyl-5-methylfuran (8): liquid; 1 H NMR (300 MHz, CDCl₃) δ 5.76-5.95 (m, 1 H), 5.75 (s, 1 H), 4.92-5.08 (m, 2 H), 3.02 (d, J = 6.3 Hz, 2 H), 2.48 (t, J = 7.4 Hz, 2 H), 2.21 (s, 3 H), 1.47-1.66 (m, 2 H), 1.12-1.40 (m, 8 H), 0.87 (t, J = 6.9 Hz, 3 H); MS (m/e) 220 (M⁺, 32), 135 (100); IR (neat) 1626, 1576, 1492, 1442 cm⁻¹; HRMS calcd for $C_{15}H_{24}O$ 220.1827. Found 220.1824.

2-Heptyl-5-methylfuran (**9**):⁶ liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.83 (s, 2 H), 2.55 (t, J = 7.6 Hz, 2 H), 2.24 (s, 3 H), 1.54-1.71 (m, 2 H), 1.19-1.44 (m, 8 H), 0.87 (t, J = 6.5 Hz, 3 H); MS (m/e) 180 (M⁺, 45), 95 (100); IR (neat) 1626, 1576, 1492, 1442 cm⁻¹; HRMS calcd for C₁₅H₂₄O 220.1827. Found 220.1824.

References:

- 1. Adlercreutz, P.; Magnusson, G. Acta Chem. Scand. B 1980, 34, 647-651.
- 2. Abbenante, G.; Prager, R. H. Aust. J. Chem. 1992, 45, 1791-1800.
- 3. Schaefer, J. P.; Higgins, J. G.; Shenoy, P. K. Org, Synth., Coll. Vol. 5, 1973, 249-

251.

- 4. Ma, S.; Li, L.; Xie, H. *J. Org. Chem.* **1999**, *64*, 5325-5328 and references cited therein.
- 5. Pelletier, S. W.; Djarmati, Z.; Lajšić, S. D.; Mićović, I. V.; Yang, D. T. C. *Tetrahedron* **1975**, *31*, 1659-1665.
- 6. Takeda, A.; Wada, S.; Fujii, M.; Nakasima, T.; Hirata, S. *Bull. Chem. Soc. Jap.* **1971**, *44*, 1342-1345.